
The Distributed
Scrum Primer

goodagile>

Important Note

A thorough understanding of the principles and practices of Scrum is
recommended prior reading this guide. We recommend The Scrum Guide,
available for free at www.scrumguides.org.

About the Author
Pete Deemer is a well-known figure in the Agile software community, and
has spent the last 25+ years leading teams building products and services at
global companies. Pete served on the Board of Directors of Scrum Alliance
from 2012-2017, and as Chairman in 2016.

Pete is the lead author of The Scrum Primer, one of the most widely read
introductions to Agile development, as well as The Distributed Scrum Primer, a
guide to multi-location Scrum.

Pete was VP of Product Development at Yahoo! in the early-mid 2000's, and
prior to that served as SVP of c|net Networks. Pete was the co-founder of
GameSpot, which is now part of CBS Interactive.

Pete is an honors graduate of Harvard University, and studied computer
science at Stanford University. He spent a number of years as adjunct faculty
at University of California Berkeley, most recently at the Haas School of
Business, where he received the prestigious Club 6 teaching award. Pete has
been a visiting lecturer at the Institute of Systems Science at the National
University of Singapore since 2010.

Pete divides his time between India, Singapore, and Sri Lanka, and works with
teams globally.

About the Contributors
Narinder Kumar and Vikas Hazrati are the Delhi-based co-founders of
Inphina Technologies (www.inphina.com), which provides agile software
development services to clients in Europe and the US. Gabrielle Benefield
is a Scrum Alliance Certified Scrum Trainer, and she is the founder of
London-based Evolve Beyond (www.evolvebeyond.com). She and Robert
Benefield provide agile and Lean training and consulting in Western and
Eastern Europe, the US, and the Middle East.

INTRODUCTION	

Attracted by significantly lower costs in places like India, China, and Eastern
Europe, many companies have embarked on globally distributed software
development initiatives. Unfortunately, many have found that while per-hour
development costs are indeed lower, overall project costs can be higher, after
factoring in the significant challenges of communication and coordination, the
cost of difficulties and delays, and higher project failure rates. Not
surprisingly, many organizations have turned to Scrum in hopes that it will
enable their distributed teams to achieve significantly better results. This
primer outlines practices that can help distributed Scrum Teams excel, and
highlights some of the common pitfalls that such teams encounter, along with
ways to respond to these challenges.

The most important point to start with is that the principles and practices of
Scrum in a distributed project are no different from the principles and
practices of Scrum in a single-location project: It’s simply Scrum, but with
added challenges brought on by the distances and differences between
locations. The Scrum practices enable teams to deliver customer value early
and often, add transparency, surface dysfunction, and drive continuous
improvement through a simple framework of “Inspect and Adapt” – all of
which are even more more acutely needed in a distributed project, but at the
same time are logistically more difficult. The following pages outline practices
which can help overcome these challenges, first in enabling communication
and then in building trust. Then, useful tips for implementing the Scrum
roles, meetings, artifacts, and technical practices are outlined, as well as
common pitfalls to avoid.

In the final analysis, there is no one “right” way to do distributed
development using Scrum, other than for teams to start with the principles
and standard practices of Scrum, and inspect and adapt to a solution that is
well suited to their particular situation – but this Primer provides starting
points and ideas that may help speed teams along the path of improvement.

ENABLING COMMUNICATION
The biggest challenges when using Scrum in a distributed environment center
around human issues, starting with communication.

At its most basic level, software development is both enabled by, and
constrained by, the quality of the communication that takes place among the
people involved. Customers form ideas about what they need, and
communicate them to the Product Owner and Development Team; these
people communicate with each other and with the customer to build
functionality that satisfies those needs; the customer communicates feedback
to the Scrum Team about what’s been built; and throughout this process,
everyone communicates with each other about questions they have, obstacles
they encounter, opportunities they see, and how they are feeling (satisfied,
concerned, etc.)

Great software is typically produced only when there is great communication
between the people involved, and poor communication will limit the quantity,
quality, and correctness of the end result.

Consider a Product Owner in one location and a Development Team in
another location. The quality of the communication between them will
directly determine how much business value (in the form of useful, high-
quality software) is delivered. Every misunderstanding between the Product
Owner and Development Team means a little less value will be delivered;
when the Development Team implements a piece of functionality incorrectly,
and has to go back and redo it, there is other work that in the end will not be
completed. Also, the more effort the communication requires, the less
business value will be produced; if the Development Team has to leave 3
voicemails for the Product Owner in order to get a response, the Product
Owner will inevitably get a little less software in the end; the Development
Team was spending their time dialing and waiting, not coding!

So how do we ensure that communication between the Product Owner and
Development Team is as effective as possible?

First, there are practical considerations. The various modes of
communication – email, telephone, face-to-face conversation – can be placed

on a “richness” scale like this:

 “Richer” Communication

 Face-to-face conversation with a physical whiteboard

 High-res, large-screen videoconference with a virtual whiteboard

 High-resolution, large-screen videoconference

 Low-resolution, small-screen videoconference

Telephone call using high quality phone hardware and a land
line (=clear connection)

Telephone call using poor quality phone hardware and VOIP
(=noisy connection)

Instant messaging and real-time text chat
Wikis and electronic discussion boards

 Email

 “Poorer” Communication

By and large, the higher up this scale you are, the richer and easier the
communication, the more natural the interaction and the more immediate and
faithful the understanding between people.

Email is, unfortunately, the go-to mode of communication between most
distributed Product Owners and Development Teams, and this is a mixed
blessing. Its great strength is that it is not dependent on both parties being
present simultaneously, and it preserves a record of the discussion that can be
referenced later. The big disadvantage of email is that it is low on the richness
scale, and often much more time and effort-intensive. A discussion that
might otherwise require a single, five-minute telephone chat could easily turn
into 10 back-and-forth emails, each cc:ed to other people (thus consuming
their time and attention, if even just to hit the delete key). Email
conversations also breed misunderstanding, and as a result, unnecessary or
unintended emotionality; without the subtle cues of voice intonation and
facial expression, one can easily misunderstand the mood, tone, and intent of
the writer.

ScrumMasters working with Development Teams and Product Owners that
are distributed need to help everyone shift away from email as the primary

means of communication. This starts with making live communication as
effortless as possible.

First, the group itself (including the Product Owner) needs to agree that
wherever possible, conversations should take place live rather than via email.
(If the conversation needs to be documented, either party is always free to
send a brief email summary after the call.)

It is important for the Product Owner to clearly communicate to the
Development Team that it is acceptable to phone with quick, urgent
questions without any “pre-scheduling” required – otherwise, many
Development Teams will assume that it is not ok to call, and will default to
email.

Next, everyone’s (and especially the Product Owner’s) desk and mobile phone
numbers and IM usernames need to be placed on a wiki or other shared
location, along with acceptable outside-of-offices hours to phone with urgent
questions, as well as a photo of the person (to remind us that it is in fact a
person!). For example:

Tom (Product Owner)
desk: +1-123-456-5678 mobile: +1-123-456-6789
office hours: Mon-Fri, 8am-6pm PST = 8:30pm-6:30am India time
urgent questions: Call mobile Mon-Fri 6:30am-9:30pm PST = 7pm-10am India

In the team work area, there should be a high-quality speakerphone with the
speed-dial buttons programmed to the Product Owner’s desk and mobile
phone numbers (preceded by any long-distance “unlocking” codes), plus a
sticker attached to the phone with the acceptable local hours to call (or clocks
will the different location times).

In addition, each team-member’s desk phone or VOIP application (and if
possible, mobile phone as well) should also have the Product Owner’s
telephone numbers programmed on speed dial.

Enabling easier telephone communication is an important step, but it is not
enough. All the Scrum events – Sprint Planning, Product Backlog
Refinements/Grooming, Sprint Review, and Sprint Retrospective – should be
conducted visually. The problem with audio-only meetings are myriad. One
misses out on facial expressions and body language entirely. It can be unclear
which voice belongs to which person. The natural “flow” and cadence of a
conversation is often missing; there are either unintentional interruptions, or
people are afraid to speak up for fear of interrupting. If participants have

unfamiliar accents, it is harder to understand them without a view of their face
as they speak. However, the most significant dysfunctions of voice-only calls
is people “multitasking” during the call; without a visual on what they are
doing, people will often find checking email or surfing the Internet
irresistable, and only pay partial attention to what is being discussed.
Participants are effectively only “half-there.”

Some companies have invested in sophisticated videoconference equipment,
but teams may find it complex and cumbersome to operate, or the conference
room where it is located is often booked. It may be more effective to provide
the team with an improvised solution as follows:

Video: Skype with a wide-angle high-resolution webcam. (It is important
to use a wide-angle webcam – this gives a wider field of view, enabling
more people to be seen on-camera)

Audio: High-quality conference phone connected via a land-line, with
multiple extension microphones for the table. (In some cases doing the
audio via Skype is sufficient, but generally a high-quality conference
phone on a land-line will produce better fidelity.)

Ideally, the above equipment should be set up and ready to use at any time in
the team room, and this should be replicated at the Product Owner’s side.
While the quality may not compare with a more sophisticated system, it more
than compensates with its simplicity, low cost, and convenience, and it
provides the most important visual information: Who is speaking, their
expression and body language, and whether people are paying attention. And
perhaps most importantly, you are reminded that your colleague is not just a
disembodied voice on the end of the line, but a real, live human being!

If the team itself is split between multiple locations, it is strongly
recommended to equip each team-member with a webcam and a comfortable,
high-quality headset with microphone. This allows for quick, one-to-one
audio-video communications at any time, without people even leaving their
seats. Ideally, there should also be an “always-on” videoconference between
the Development Team’s locations: a high-resolution wide-angle webcam and
large-screen display in each of the team work areas, with continuous Skype
video streaming between the two. This serves as a “window” between the
two rooms, and because it is always on, it enables instantaneous multi-person
conversation and collaboration.

In addition to videoconferencing capability, it is important to also have some
type of desktop-sharing software with virtual whiteboard capabilities. Many

teams also find it useful to use a low-cost digital tablet for diagramming on
this virtual whiteboard.

Finally, for the Scrum events – Sprint Planning, Product Backlog
Refinement/Grooming, Sprint Review, and Sprint Retrospective – it’s helpful
to have simultaneous videoconferencing and whiteboarding capability. The
following diagram shows a conference room with an ad-hoc setup for doing
this, with two projectors side-by-side (one projector displaying the Skype
video feed from the other location, and the second projector displaying the
shared desktop or virtual whiteboard), plus a high-quality conference phone
on a land-line.

Offshore teams may feel uncomfortable asking for these investments in
quality communication for fear of being perceived as burdensome or
demanding, but when one considers the “big picture,” it is hard to justify not
making this investment:

The Pioneer team in Bangalore had been feeling frustrated for some time about the
difficulty of long-distance meetings with their Product Owner, Steve. Everything was
done by conference call and email, and communication was really quite difficult. The
conference phone was not very good – it was just a cheap desk phone with a

“conference” button – and the sound quality was very unclear. Everyone was
constantly interrupting each other by accident, and sometimes there were long pauses
from Steve that made the team wonder whether perhaps he perhaps had them on mute
and was typing emails – either that, or he was unhappy with them, and did not feel
comfortable saying so – they just were not sure. The communication was always a
struggle, and the team felt like it was always difficult to express themselves, there were
frequent misunderstandings, and this eventually resulted in the team building
functionality that was not quite what Steve wanted. The ScrumMaster, Sanjay,
resolved to do something about the situation.

The first step was upgrading the technology they were working with. The team felt
confident that if they could make the four key meetings of each Sprint visual, it would
really improve the quality of their communication with Steve. Sanjay gathered the team
and led a brainstorming session to come up with a “shopping list.”

Wide-Angle Webcam x 2 $100 [for the team plus Steve]
High-Quality Conference Phone $150 [for the team]
Digital Tablet x 2 $100 [for the team plus Steve]
TOTAL $350

Sanjay took this list to his department manager, Vikram.

“Vikram, we’re having some serious communications issues with our customer Steve,
and the team and I feel that we need to upgrade our communication tools. I need your
approval to spend $350 on the following items.”

Vikram studied the list. “Unfortunately, that’s rather a lot of money for us to spend
on things that aren’t really necessities. I don’t think I can approve this.”

Sanjay thought for a moment, then took out a sheet of paper and a pen.

“Vikram, think of it this way. How much does the team cost the company? Let’s
include salary, benefits, rent, electricity, equipment, everything. It’s about $33,000 per
person per year, and we have 6 people on the team. So the total is…”

6 x $33,000 = ~$200,000

“So for this $350 purchase to make sense financially, it has to improve our effectiveness
by $350 / $200,000, or 0.2%. This means that it will pay for itself with even a tiny
improvement in our effectiveness. And if better communication with the customer
improves our effectiveness even more – let’s say by just 10% or 20% -- then this could
be the single best investment we make all year!

BUILDING TRUST
The other key enabler – or constraint – for distributed projects is how much
trust there is between the Product Owner and the Development Team.
Inevitably, in the course of day-to-day cooperation, there will be bumps in the
road. Miscommunication will happen, misunderstandings will occur, mistakes
will be made, and myriad other problems will come up. If there is a strong
human relationship between the Product Owner and Development Team,
these issues can simply be taken at face value; they will remain routine
misunderstandings or mistakes which can be overcome. However, if there is
not a strong relationship, over time these issues tend to pile up and become
“evidence” in a dark narrative about the other party: that they are
incompetent, dishonest, or even crazy – or even all three! Unfortunately, it is
extremely difficult to “unthink” these thoughts about others once they have
taken hold; at that point, the relationship has reached rock bottom, and every
interaction will be difficult and minimally productive, and significant time will
be spent documenting interactions rather than building software. It is not
uncommon to find distributed projects where the Product Owner is utterly
convinced that the Development Team is incompetent, and the Development
Team is utterly convinced that the Product Owner is irrational. With limited
information about the other person, we often tend to fill the gaps with fears
rather than facts; when someone does the wrong thing, we are apt to take it as
evidence that they do not know what they are doing – which is what we fear
most – rather than other possible explanations (such as: they did not fully
understand what was expected of them and were afraid to ask for
clarification).

The only way to reduce the risk of these misapprehensions taking hold is by
building a foundation of trust between the Product Owner and the
Development Teams.

This begins with a human relationship between the two. One of the most
critical steps for the success of a distributed Scrum project is for the Product
Owner and Development Team to come together in person at the beginning
and spend quality time sharing key project information and building a
relationship with each other.

This is particularly important at the beginning of a major project; in addition
to starting the relationship, there is also a large amount of information that
needs to be communicated. First, the Product Owner needs to provide the
team with a clear and comprehensive understanding of the overall vision,
purpose and goals of the project; this context give the Development Team a

strong foundation for their day-to-day work, and also helps build their
motivation and drive. Next, the Product Owner and Development Team will
have an opportunity to go through the items on the Release Backlog (the
subset of the Product Backlog targeted for the nearest release), and discuss in
detail the features and functionality required. This gives the Development
Team a vastly deeper and more nuanced understanding of the requirements
than they could ever derive from a written specification along. This
conversation will also provide more “subtle” information and understanding;
for example, about the values, attitudes, and mindset of the Product Owner
and Development Team members.

The major objection to this is the cost of the trip in time and money. But let
us take a moment to analyze this objection further.

Let’s consider the example of a Product Owner in San Francisco flying to visit
her team in Sofia, Bulgaria:

 Flight, US to Bulgaria US$3,000
Comfortable hotel accommodations and meals for 5 days US$1,500
Ground transportation, visas, other incidentals US$500
Total cost of trip US$5,000

This hypothetical Product Owner is kicking off a 1-year project:

 Cost of project US$500,000

The cost of the trip is just 1% of the total project cost. Will an in-person
project kickoff, knowledge transfer, and relationship-build improve the results
of the project by more than 1%? Guaranteed. In fact, anecdotally, the overall
project ROI improvement this produces is probably more on the order of 30-
50% or more.

Still not convinced? Let us go further with our analysis.

The cost of the project is US$500K, but that is not the value of the project.
What is the business value this project is going to be producing? What is the
cost to the business if this project fails? Likely an order of magnitude greater
than what it will cost to complete.

Let us assume this hypothetical project, if successful, will enable $4 million in
new revenue and $1 million in cost savings; its total potential value is $5
million.

Compare that to the cost of the Product Owner making the journey to India
for the project kickoff:

 Value of project US$5,000,000 100%
 Travel cost for project kickoff in person US$5,000 0.1%

The bottom line is that there is just no excuse for the Product Owner not to
join the Development Team in person for the project kickoff. If the project
matters, that is – and it is worth noting, the willingness of the Product Owner
to come in person for the kickoff sends a very clear message to the
Development Team that “this project matters!”

To be really useful, this kickoff must include more than just workplace
interaction; the Product Owner and Development Team should plan informal
outings away from the office, to give them the opportunity to interact not just
as co-workers but as people. The ideal itinerary for “human meshing” could
include group outings to tourist sites, a bowling outing, dinners together,
possibly even a visit to one of the Development Team members’ homes. (It
is important to note that these excursions are for the Product Owner and the
Development Team to bond – not for senior management to dazzle their
client.)

The bonding experience can be particularly important when the Product
Owner and Development Team are from very different cultures. Sometimes,
accentuating some of the cultural differences can have benefits.

For example, a team in Bangalore took their Product Owner Phil, who was
visiting from the US, to a local temple for a Puja (religious ceremony) to bless
the success of the project; it turned out to be both a very memorable
experience for Phil, and also a strong bonding event for the entire group.
Management needs to understand that while this looks like “non-work time,”
it is actually a critically important investment in the vitality and success of the
project.

In addition to the human bonding, the in-person visit by the Product Owner
can achieve other goals as well. First, it lay the groundwork for bridging some
of the cultural differences between the two locations.

For example, in the business culture of many Asian countries, there is a taboo
against sharing bad news bluntly, or appearing overly emotional. In other
countries – the US, for example – frankness is more the convention. When a
team in Delhi says to their Product Owner, “we have a bit of a concern about
X,” what they may really be expressing is “we see a very serious issue with X

that needs immediate attention”; unfortunately, what their Product Owner in
Silicon Valley hears is “it’s only a minor concern, so why bother spending
time discussing it”. Similarly, when the Product Owner in Silicon Valley says
“The situation with Y is a complete disaster!”, he’s likely trying to convey
“There’s a problem here, let’s really focus hard on solving it,” but
unfortunately the team in Delhi interprets the statement to mean “Go pack
up your desks, you’re all out of a job!”. None of these people are intentionally
misleading – rather, they’re expressing their thoughts using the norms of their
particular locale.

One final benefit of the Product Owner traveling to the Development Team’s
location is for him or her to experience first-hand some of the challenges the
Development Team experiences working in their location. A Product Owner
from the US who is used to a 30-minute commute to the office, uninterrupted
power, continuous air-conditioning in the summer, and fast, reliable
broadband likely assumes his counterparts on the other side of the world
experience the same. After an in-person visit, though, he might realize that
his team faces a 2-hour commute in each direction, power and broadband
connectivity that comes and goes, and a host of other daily challenges.

Apart from this initial visit by the Product Owner, it is also important that the
entire group co-locates again every 3-4 months, and right before or after
major milestones have been achieved. If the Product Owner has traveled to
the Development Team’s location for the project kick-off, then it may be
helpful for the team to travel to the Product Owner’s location after the first
release, and spend an entire Sprint (or at least a week) together. This time
together is used to re-emphasize the “big picture” vision and goals, kick off
the forthcoming release, discuss any major issues or upcoming decisions with
their colleagues, and generally re-sync the two locations with each other. It is
also very helpful if the Development Team members from the offshore
location get to interact with business stakeholders and end-users in person;
this provides them with a better understand the real context of their work,
and goes a long way towards reinforcing a common goal and “one-team”
mindset.

The second part of building a relationship of trust is developing openness and
honesty between the players. Development Teams are often fearful about
being open with the Product Owner, especially if that person is the customer;
the Development Team worries that if they raise a difficulty or concern, the
customer will be upset or disappointed, and may even complain to
management. As a result, many Development Teams invest a significant
amount of effort in trying to create the appearance that everything is going well.

Indeed, the less well things are going, the more effort has to be invested in
maintaining this appearance – effort which, ironically, would be much better
spent trying to solve the problem. Development Teams are often afraid to
even ask questions, concerned that their uncertainty will be perceived as
incompetence – and as a result, questions go unasked and the team makes
assumptions, produces the wrong thing, and ultimately creates the very
perception they were trying all along to avoid!

So how does one avoid this syndrome? The Product Owner must
communicate to the Development Team in no uncertain terms that he or she
wants to hear good news as well as bad, that nobody will be punished for
honesty, and that the only “dumb” question is the question that goes unasked.
Then after “talking the talk,” the Product Owner must “walk the walk” – he
or she needs to constantly press the team to ask questions and raise concerns,
and when the team does bring up problems (which will happen tentatively at
first), respond in as positive and solutions-oriented a way as possible.

Tom was becoming increasingly concerned about his Development Team in Shanghai.
The project they were kicking off was going to be extremely challenging technically, and
they would be working in a new domain and using tools that were new to them. But
what concerned Tom the most was the fact that the Development Team was expressing
no worry or doubt about this at all. On every call they seemed to have the stance of “we
don’t see any problem at all; we’re fully confident that we will be able to master these
new areas, and we don’t have anything to worry about.” Tom felt this attitude was
unrealistic, almost to the point of being irresponsible; if the Development Team truly
had no worries, then they were living in a fantasy land!

In reality, of course, the Development Team was very concerned. But the last thing they
were going to do was communicate this to their customer. If Tom found out that they
were concerned, who knows what he might do! Complain to management? Try to
cancel the contract? They certainly did not want to find out.

Tom tried giving subtle hints and suggestions, but in the end, he decided to really share
what he was thinking during a call with the Development Team.

“Guys, there’s something I’m really concerned about, that I really need to talk to you
about.”

Hearing these words, the Development Team stiffened.

“On every call with you, all I hear is “things will be fine”. But let me tell you, this is
a big project with a lot of risk. I’m losing sleep over it, and we’re not even a month in.

 And what worries me most is that I’m not hearing any of the same concern from you
all. That’s making me wonder if maybe I’m the only one who sees how hard this is
going to be. Do you all get it? Are you all at all concerned about this?”

There was silence. Then Lee Wei, the most experienced of the developers, responded.
He sounded a little tentative.

“Of course Tom, we have some concerns…”

Tom felt a little relieved that the team was acknowledging what he was saying.

“Okay, so tell me about your concerns.”

There was more silence, and then Lee Wei continued. There was a major issue the
Development Team had been worrying about for some weeks now.

“One concern we have is that the database may not give the performance we need under
heavy loads.”

This caught Tom off-guard. At no point in the discussions so far had there been any
mention of performance worries. Tom’s first instinct was to respond with “Why the
heck didn’t you bring this up sooner!,” but he caught himself. He took a deep breath.

“Okay. I have to admit, I’m pretty surprised to hear this. I didn’t realize that there
was a concern here, and this is something potentially very serious.”

There was silence, and the the Development Team braced themselves for what was to
come next.

“But I have to say, I am really happy you all shared this with me. Now that I know
about it, we can do something about it. Great performance is make-or-break for this
project, so we need to get to grips with this issue. So what could we do to answer the
question now? Let’s create an item to go at the top of the Product Backlog...”

In this scenario, how will Tom’s reaction affect the Development Team’s
behavior going forward? What would have happened if Tom had reacted
badly to the Development Team’s revelation?

To establish a foundation of trust at the beginning of a long-distance working
relationship, it can be very helpful to have an open and direct conversation
about what everyone is committing to, and what each expects the other to do.
This could simply take the form of a conversation, or it could come in the
form of a “working agreement” between the Development Team and the
Product Owner.

Some examples of such commitments among real-world Scrum Teams are:

We commit to be honest with each other. If we have a concern, a doubt, a worry, or if
we see a problem, we commit to surface it to each other immediately.

If we are unhappy about something that has happened, or something that the other has
done, we commit to surface this immediately to each other.

We commit not to escalate a problem to upper management without first trying to work
it out with each other. If an escalation does become necessary, we commit to letting each
other know in advance, so it doesn’t catch anyone by surprise.

These are just a starting point – for a more extensive set of examples, please
visit goodagile.com/faq/commitment/

DISTRIBUTED SCRUM PRACTICES
In a distributed environment, all the standard practices of Scrum – the roles,
events, and artifacts – are present. However, it may be necessary to adjust
how those practices are implemented, to overcome differences in timezone
and geographic location.

Sprints

There is no “best” Sprint length to use, either in a co-located or a distributed
environment. Longer Sprints (3 or 4 weeks) enable teams to produce larger
increments of Product in each Sprint, and the Sprint Planning, Sprint Review,
and Sprint Retrospective events (which typically involve early morning or
evening meetings for everyone involved) occur less frequently. Unfortunately,
both of these benefits can create other drawbacks. Because of the
communication problems that flow from having the participants in different
locations, it is far more common to discover misunderstood requirements
when we reach the Sprint Review. In a 4-week Sprint, it is possible that twice
as much of the “wrong” functionality will have been built than would have
been built in a 2-week Sprint. Additionally, a 4-week Sprint offers half the
frequency of inspect-and-adapt cycles for the Scrum Team’s practices, so
many teams find they have fewer opportunities to surface and address
dysfunctions.

One solution is to start with 2-week Sprints, and focus initially on mastering
the ability to deliver increments of potentially shippable product (possibly
very small ones) by the end of a Sprint. A number of Sprints’ worth of
inspect-and-adapt may be required for the team to achieve this, but once they
have succeeded, they can shift to a longer Sprint length, and be able to deliver
larger, more satisfying increments of functionality.

The Product Owner
One common distributed Scrum configuration is to have a Product Owner in
one geographic location, and the Development Team in one or more other
locations. It actually becomes even more important to have an actively
involved and committed Product Owner in this situation, with daily
availability to answer questions, clarify requirements, provide input, and help
the ScrumMaster remove impediments. Making sure there is at least a daily
30-to-60-minute window during which the Product Owner and Development
Team can interact live will be important.

Some organizations try having an local individual in the role of “Proxy
Product Owner,” to provide guidance to the Development Team when the
actual Product Owner is not available. This almost always brings with it a
new set of challenges; the “Proxy PO” will rarely have the depth of domain
expertise or the decision-making authority to give definitive answers to the
Development Team, and the risk is that they give answers that are later
reversed by the “true” Product Owner (resulting in wasted effort and
discouragement for the team), or they serve purely as an intermediary between
the Development Team and the “true” Product Owner, which dramatically
slows response times, and introduces errors and misunderstandings in both
directions. Because of these very common difficulties with having a “Proxy”
Product Owner, this approach is not recommended. In Scrum, there is one
Product Owner.

The ScrumMaster
The role of the ScrumMaster becomes even more critical in a distributed
project, because the “dysfunctions of distance” and a greater-than-usual load
of impediments, obstacles, and disruptions that will require the ScrumMaster’s
attention and effort.

If the Product Owner is in one location and the Development Team is in the
other, the ScrumMaster should be located where the Development Team is.
While an onshore ScrumMaster may be able to help an offshore team with
some types of issues, he or she will unfortunately be entirely absent from the
realities of the Development Team’s day-to-day worklife, and thus they will be
far less useful to the Development Team. Ccoaching the Development Team,
helping remove impediments, and protecting the Development Team from
disruptions will in practice be impossible if the ScrumMaster is physically
located far away from them.

If the Development Team itself is divided between multiple locations, there
should be a primary ScrumMaster designated for the team overall, but it may
be helpful for each location to have a team-member playing the role of “local”
ScrumMaster during that location’s working hours.

The Development Team
When the Development Team itself is split between multiple locations – for
example, several team members are located in China, and several team
members are located in the US – the challenges of development are often
multiplied further. The level of coordination, cooperation, and team-work

that is necessary to deliver working software every 4 weeks or less is even
more demanding. It takes real commitment and a significant investment in
the working relationships, skills, and tools used by the various team members
to deliver a high level of performance.

To begin with, the Development Team will need to spend a period of time
working side-by-side with each other, especially at the beginning of the
project. An excellent practice is for the Development Team to be colocated
for the entire first Sprint of the project; this enable the developers to build
working relationships with each other, as well as trust and visibility into each
others’ skills, personalities, strengths and weaknesses. In addition, the
Development Team will develop a set of working agreements and set
standards for their “Definition of Done,” quality, coding conventions and
other development practices, tools, escalation, overlapping work hours, and
other necessities – all practices that are done most effectively in person.

In addition to colocating the Development Team for the first Sprint, the
distributed teams that succeed with Scrum typically have some sort of
“ambassadorship” practice, where team-members frequently travel to the
other location for periods of time working side-by-side with their distant
colleagues. When these “ambassadors” return home, they bring with them
knowledge and values that will inform the work of their local colleagues, and
they will also be able to function as points of contact for their remote
colleagues when issues arise.

The immediate objection to this constant travel is “it will cost money and
time!” The simple response: Yes, but it is still cheaper than the alternative,
which is getting much less business value from the project. Without face-to-
face contact and high-quality working relationships, the Development Team
will produce either less software, lower quality software, or functionality that’s
less right for the customer needs – or all three. A team of 6 developers with a
generous travel budget will probably produce much more business value than
a team of 7 developers with no travel budget.

A common dysfunction when the Development Team itself is split between
two locations and are not properly bonded is that the “one team” actually
operates as two teams. Team-members may form “cliques” by location, and
miscommunication or miscoordination between the locations may give rise to
mistrust and conflict. It is also possible that if a portion of the Development
Team is located where the Product Owner is, they will have an information
advantage over the offshore developers. While one would hope that this could
benefit the entire team, it can sometimes do the opposite, driving a wedge
between the two groups of developers, with the offshore group being seen by

onshore as “clueless” and always a step behind, and the onshore group being
seen as hoarding knowledge and looking out only for themselves.

Rather than trying to work as a single team, it may be more effective to form
into separate Development Teams, one per location, and as loosely coupled
with each other as possible. Each Development Team should be cross-
functional, and should be responsible for producing entire pieces of
functionality, not simply doing a particular activity (coding, testing, etc.).

Technical Practices

In addition to strong working relationships and effective communication,
there are a number of other practices which are helpful for the success of
Development Team doing Scrum in a distributed environment.

For Development Team that are split between multiple locations, it is very
important that all team members have the same development environment
and configurations, and work on shared DTAP (Development Test
Acceptance and Production) servers; this removes ambiguities and reduces
problems caused by inconsistencies between the locations.

As is true for co-located Scrum teams, the practice of Continuous Integration
is also extremely helpful. In Continuous Integration, new or changed code is
integrated early and often; commits trigger an automated build-and-test cycle,
allowing integration problems to be detected and corrected immediately. By
doing this frequently and with small increments of change, problems can be
found when they are smaller and more manageable, so less time overall is
spent in the finding-and-fixing activities. It is important of course to have the
discipline to immediately resolve the issues, and many Development Teams
agree on conventions, such as “you can’t leave the office with a bad build
unfixed”; the last thing the developers on the other side of the globe want is
to start their day with this problem.

Continuous Integration also enables a less rigid and more emergent approach
to defining and building interfaces; with more confidence in their ability to
find and fix problems quickly, teams can be more dynamic in the way they
work, and work together more smoothly.

It is important that the required knowledge, capabilities, and skill levels are
evenly distributed across both locations; an imbalance will possibly result in
less value produced each Sprint. For example, having senior architects and
designers onshore and junior developers offshore will likely result in a lot less
software being produced, and a much more dysfunctional relationship

between the two locations, than if a more experienced team was recruited
offshore. In the event there are skills or capabilities which cannot be shared
across both locations, this should be made clear and visible to all stakeholders
as a possible impediment.

When deciding who works on what during a Sprint, it's important that team
members from one side not take all the work in a particular area on a regular
basis; for example, onshore team members always taking UI tasks, while
offshore team members always working on back-end services. While this may
sound like a simpler approach initially, it generally results in silos that
undermine the “shared responsibility and ownership” mindset of the team.

When the team is physically split, real-time communication tools becomes
critically important. At a minimum, teams require the following:

• Instant Messaging client (not only for communication and easy
transfer of text, but also for indicating their presence online to other
team members)

• Comfortable, high-quality headset and VOIP client, to make
conversations with remote team-mates quick, easy, and free (with
“always on” as an option)

• Webcam and Skype, for instant videoconferencing
• Shared digital whiteboard, for design and architecture discussions
• Desktop sharing solution (for example, a VNC client)
• Team wiki (with not only project details but also personal info about

each team member)
• Shared bug tracker
• Team calendar, showing release dates, Sprint dates, local holidays,

and vacation plans
• Team mailing list, to which all key emails are cc:ed.
• Build status alerting device at all distributed locations

Sprint Planning Meeting
One of the practical conflicts in distributed Scrum is the fact that (a) more
time is typically needed to properly complete the Sprint Planning, Review, and
Retrospective meetings than in a colocated environment, and (b) we often
have less time available for these meetings (due to lack of timezone overlap).
This is less of an issue for projects between Europe and Asia, for example,
but for the US and Asia, it can become a real impediment to success.

One approach that can help is to split the longest of the meetings – Sprint
Planning – into 3 shorter sessions over the span of two days, as follows:

Sprint Planning Part 1 (1 hour timeboxed) Weds 8am NY
 6:30pm India
Product Owner walks the team through the items at the top of the
Product Backlog, team asks questions, clarifies their understanding,
and make suggestions.

Sprint Planning Part 2a (2-3 hours) Thurs India
workday
Team starts doing an initial analysis, task breakdown, and estimation
of the items at the top of the Product Backlog. They come up with a
list of questions for the Product Owner.

Sprint Planning Part 2b (1 hour timeboxed) Thurs 8am NY
 6:30pm India
Team and Product Owner discuss the team’s open questions, and the
team decides their commitment for the Sprint

Work begins Friday India
workday

On the days when the team will be staying late for the evening meetings, it is
important that they maintain a reasonable workday by coming into the office
later in the day than they would normally; a recurring schedule of 12-hour
days will very quickly start to exhaust the team, and cause productivity and
morale to drop, and mistake rates to go up.

Lastly, many teams find it very helpful to budget a generous amount of time
during the Sprint for doing Product Backlog Refinement/Grooming with the
Product Owner. Together, they look ahead to upcoming Product Backlog
items, gain a clearer understanding of them, split larger Product Backlog items
in smaller ones, and prepare them to be considered in the next Sprint
Planning meeting; the more time spent on these activities, the more easily and
quickly the next Sprint Planning will go.

Daily Scrum
If the Development Team is colocated together, and the Product Owner is in
a different location, the first question is whether the Product Owner should
be invited to join the team’s Daily Scrum. There are pro’s and con’s to this.

Some Development Teams find it helpful to have the Product Owner join the
meeting, so he or she is aware of their impediments on a day-to-day basis, and
to have a window of time after the meeting each day for live discussion with
the Product Owner. However, there can also be downsides to having the
Product Owner join. It often costs precious minutes each day, as either for
the Development Team or the Product Owner waits for the other to join the
meeting. Having the Product Owner joining the Daily Scrum can also make
the Development Team feel like they’re being monitored and overseen, and
this adds pressure and stress, invites micromanagement, and can reduce the
Development Team’s sense of responsibility and ownership. Third, if due to
the presence of the Product Owner the call has to take place in the evening
hours for the Development Team, it will hurt morale and significantly
accelerate burnout, with the end result of much less business value being
produced. If the Product Owner is anxious to know how the Sprint is
progressing, it may be much less disruptive to have the ScrumMaster simply
email a camera-phone photo of the Sprint Burndown Chart.

If the Development Team itself is in different locations, the ideal is to hold
the Daily Scrum live via webcam each day, at a working hour that overlaps for
both teams; this is feasible between Europe and India, or West Coast USA
and China. If there is no working hour that overlaps, here are several options
to try:

• Hold the Daily Scrum live via webcam or conference call each day at
an hour that is inconvenient for one side or the other. It is very
important to rotate the burden of the inconvenience from one side to
the other every week or two. The main downside of this approach is
the daily outside-regular-work-hours for one part of the team; this
will likely add stress, hurt morale, and reduce productivity over time.
If this option is chosen, be mindful of different cultures’ meal-
schedules; for example, in the US, it is common to eat dinner around
7 or 8pm, while in India, it is more typical for dinner to take place at
9 or 10pm.)

• Hold the Daily Scrum meeting using recorded reports. The team
members in each location will do their Daily Scrum meeting at a time
that is convenient for them. At the start of the meeting, they will use
a cameraphone to record video of their updates, and the video will be
emailed to the teammates in the other time zone, and played at their
next Daily Scrum meeting. Repeat in reverse.

Sprint Review
Sprint Reviews enable the Scrum Team and stakeholders to inspect and adapt
what has been produced in the current Sprint, and collaborate about what
could be done next. In a distributed Scrum, features may be less “right” the
first time they’re shown, because clear and complete communication is made
more difficult by the distance. This is one of the realities of distributed
development, and the Product Owner should build into the release plan
buffer to account for the additional rework that will be required, as items are
placed back onto the Product Backlog for improvement.

It is very important that the Sprint Review be planned for a time when the
entire Scrum Team – including all onshore and offshore members – can
participate together. All members of the Scrum Team should feel like full
participants in the Sprint Review, and should be able to hear first-hand the
comments about has been produced, share their own opinions, and join in the
discussion. Ideally, the demoing of the new functionality should be done by
Development Team members from both the onshore and offshore locations.
Having the onshore members demo everything can often create negative
feelings for the offshore members, who may feel like they’re not receiving
recognition for their work or are being treated like “second-class” team-
members.

Sprint Retrospective
The purpose of the Sprint Retrospective is for the Development Team,
Product Owner, and the ScrumMaster to discuss their experiences and
observations from the current Sprint, identify issues and areas for
improvement, and agree on changes to make to their way of working to
produce better results in the next Sprint. The more distributed the team, the
more issues there will be – and thus, the more thorough and effective the
Sprint Retrospective needs to be. The most successful Scrum Teams focus
on the “learning” or “experimental” mindset that Scrum enables: identifying
problems as quickly as possible, and then “testing” a practical solution in the
very next Sprint. Rather than agonizing over what is the best possible way to
do something, think of the simplest thing that could work and try it for a
Sprint. Shorter-length Sprints may accelerate these improvements, by
enabling more rapid cycles of inspect and adapt.

As in colocated Scrum projects, the Retrospective should include the Product
Owner; many dysfunctions will play out between the Product Owner and the
team, and excluding the Product Owner from the Retrospective will

significantly hinder improvement. In addition, it’s very important for the
Retrospective to be visual (via videoconference); the subtle cues of facial
expression and body language become even more important in difficult
conversations.

Scrum Artifacts
In a distributed Scrum project, more written artifacts will typically be used,
but just how much and what format should be left to the Product Owner and
Development Team to determine. This should not be taken to mean that the
written detail is all that is required. Indeed, the presence of more written
detail will often mean that more conversation – not less – will be required
between the Product Owner and Development Team to achieve an effective
shared understanding. The additional written detail simply gives the
Development Team a reference tool for answering questions when the
Product Owner is not immediately available.

With distributed Scrum Teams, aim to share a common vision and break the
work into small packages that are easier to inspect and adapt, thus reducing
confusion and finding misunderstandings sooner. Product Backlog Items
should be short and easy to understand, with clear conditions of satisfaction
attached. Pictures in the form of sketches, diagrams and simple mockups can
convey a lot of information quickly. While User Stories are a popular and
effective format for articulating Product Backlog items, lightweight use cases
can also work well. Some Development Teams find that having a demo server
where the Product Owner can review functionality on a daily basis can help
keep everyone in sync and aligned, and surface misunderstandings sooner.

There are difference approaches to managing the various Scrum artifacts. If
the Development Team is colocated, and the Product Owner is in a different
location, paper may still be the best choice for the Sprint artifacts (for
example, the Sprint Backlog and Sprint Burndown Chart used by the team to
manage their work during the Sprint), but some type of electronic tool may be
necessary for storing the Product Backlog; for example, using a Wiki or a
Google docs spreadsheet may be a simple, very low-cost solution. If the
Development Team itself is distributed, or if multiple Development Teams in
different locations are working together, a more elaborate electronic Scrum
information tool will likely be necessary. In every case, though, the thinking
should be driven by the dictum “try the simplest thing that could possibly
work, and inspect and adapt”. For example, many Development Team find it
helpful to document their agreements with the Product Owner (for example,
from a conference call) with some type of written confirmation. A fast,

simple way to do this would be to send the Product Owner an email with the
subject line “agreements – conf call – aug 11,” with a very brief, bullet-
pointed list in the body; the email would be cc:ed to a team blog, so everyone
could refer back to it.

Product Backlog Refinement

Scrum Teams find it useful to devote time during each Sprint (typically 5-10%
of their availability) for Product Backlog Refinement/Grooming. New items
and items that have changed significantly will be estimated by the
Development Team, large items rising in priority will be split into smaller
items, and the Development Team will have time to start thinking about how
they will approach the upcoming work. Items that are unclear or too big can
be refined further, and when there is a difficult technical issue or uncertainty,
the Development Team can plan work within an upcoming Sprint to do
technical exploration, and gain enough of an understanding to estimate and
later implement the item.

Scrum of Scrums
When multiple Scrum Teams in different locations are working together on a
project, there are three commonly used techniques for coordinating their
efforts, all of which can be used together.

The first is enabling and encouraging informal, lateral communication
between members of different Development Teams. This is often
overlooked, but it is one of the most powerful tools for day-to-day
effectiveness. When a Development Team or team-member is blocked by
another Development Team, their first step should be to reach out to
someone on that team, and this should be made as easy as possible. There
should be a project-wide Wiki set up, that everyone on the project has access
to. Under each team is listed team-member contact info (including email but
also IM, VOIP and mobile phone numbers, plus typical working hours and
urgent question contact hours translated into the various teams’ timezones) as
well their particular domains or areas of expertise.

The second technique is Scrum of Scrums. This is a practice where a
representative of each Development Team (selected by their team-mates)
meets with the other teams’ representatives on a regular schedule (typically 2-
3 times per week, but it could be daily if necessary) to update each other on
progress, surface and resolve inter-team blocks and dependencies, make
cross-team technical decisions, and otherwise provide a forum for cross-

project visibility and impediment resolution. When Development Teams are
in significantly different timezones, it is important that the Scrum of Scrums
meeting time be rotated, so that the pain of late-night calls is shared among all
the participants; having a subset of the group perpetually more
inconvenienced than others can breed resentment that will often start to
manifest in other kinds of dysfunction.

The third technique is to establish cross-geographic “communities of
practice,” to enable Development Team members with particular specialties
(for example, architecture) to work across team boundaries and together guide
the overall direction and evolution of the project. These groups inspect and
adapt to find the right composition and meeting frequency.

